AMP-activated Protein Kinase
   HOME

TheInfoList



OR:

5' AMP-activated protein kinase or AMPK or 5' adenosine monophosphate-activated protein kinase is an
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. A ...
(EC 2.7.11.31) that plays a role in cellular energy homeostasis, largely to activate glucose and fatty acid uptake and oxidation when cellular energy is low. It belongs to a highly conserved
eukaryotic Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
protein family and its orthologues are SNF1 in yeast, and SnRK1 in plants. It consists of three proteins ( subunits) that together make a functional enzyme, conserved from yeast to humans. It is expressed in a number of tissues, including the
liver The liver is a major Organ (anatomy), organ only found in vertebrates which performs many essential biological functions such as detoxification of the organism, and the Protein biosynthesis, synthesis of proteins and biochemicals necessary for ...
,
brain A brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as vision. It is the most complex organ in a v ...
, and
skeletal muscle Skeletal muscles (commonly referred to as muscles) are organs of the vertebrate muscular system and typically are attached by tendons to bones of a skeleton. The muscle cells of skeletal muscles are much longer than in the other types of muscl ...
. In response to binding
AMP #REDIRECT Amp {{Redirect category shell, {{R from other capitalisation{{R from ambiguous page ...
and ADP, the net effect of AMPK activation is stimulation of
hepatic The liver is a major organ only found in vertebrates which performs many essential biological functions such as detoxification of the organism, and the synthesis of proteins and biochemicals necessary for digestion and growth. In humans, it i ...
fatty acid oxidation,
ketogenesis Ketogenesis is the biochemical process through which organisms produce ketone bodies by breaking down fatty acids and ketogenic amino acids. The process supplies energy to certain organs, particularly the brain, heart and skeletal muscle, unde ...
, stimulation of skeletal muscle fatty acid oxidation and glucose uptake,
inhibition Inhibitor or inhibition may refer to: In biology * Enzyme inhibitor, a substance that binds to an enzyme and decreases the enzyme's activity * Reuptake inhibitor, a substance that increases neurotransmission by blocking the reuptake of a neurotra ...
of
cholesterol Cholesterol is any of a class of certain organic molecules called lipids. It is a sterol (or modified steroid), a type of lipid. Cholesterol is biosynthesized by all animal cells and is an essential structural component of animal cell mem ...
synthesis,
lipogenesis In biochemistry, lipogenesis is the conversion of fatty acids and glycerol into fats, or a metabolic process through which acetyl-CoA is converted to triglyceride for storage in fat. Lipogenesis encompasses both fatty acid and triglyceride syn ...
, and
triglyceride A triglyceride (TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids (from ''tri-'' and ''glyceride''). Triglycerides are the main constituents of body fat in humans and other vertebrates, as w ...
synthesis, inhibition of adipocyte lipogenesis, inhibition of adipocyte
lipolysis Lipolysis is the metabolic pathway through which lipid triglycerides are hydrolyzed into a glycerol and free fatty acids. It is used to mobilize stored energy during fasting or exercise, and usually occurs in fat adipocytes. The most important ...
, and modulation of insulin secretion by
pancreatic The pancreas is an Organ (anatomy), organ of the digestive system and endocrine system of vertebrates. In humans, it is located in the abdominal cavity, abdomen behind the stomach and functions as a gland. The pancreas is a mixed or heterocrine ...
β-cells. It should not be confused with
cyclic AMP Cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3',5'-cyclic adenosine monophosphate) is a second messenger important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transd ...
-activated protein kinase (
protein kinase A In cell biology, protein kinase A (PKA) is a family of enzymes whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase (). PKA has several functions in the cell, including regulatio ...
).


Structure

AMPK is a
heterotrimeric In biochemistry, a protein trimer is a macromolecular Complex (chemistry), complex formed by three, usually covalent bond, non-covalently bound, macromolecules like proteins or nucleic acids. A homotrimer would be formed by three identical molecul ...
protein complex A protein complex or multiprotein complex is a group of two or more associated polypeptide chains. Protein complexes are distinct from multienzyme complexes, in which multiple catalytic domains are found in a single polypeptide chain. Protein c ...
that is formed by α, β, and γ subunits. Each of these three subunits takes on a specific role in both the stability and activity of AMPK. Specifically, the γ subunit includes four particular Cystathionine-β-synthase (CBS) domains, giving AMPK its ability to sensitively detect shifts in the
AMP #REDIRECT Amp {{Redirect category shell, {{R from other capitalisation{{R from ambiguous page ...
/ ATP ratio. AMPK is deactivated upon AMP displacement by ATP at CBS site 3, suggesting CBS3 to be the primary allosteric regulatory site. The four CBS domains create two binding sites for AMP commonly referred to as Bateman domains. Binding of one AMP to a Bateman domain cooperatively increases the binding
affinity Affinity may refer to: Commerce, finance and law * Affinity (law), kinship by marriage * Affinity analysis, a market research and business management technique * Affinity Credit Union, a Saskatchewan-based credit union * Affinity Equity Par ...
of the second AMP to the other Bateman domain. As AMP binds both Bateman domains the γ subunit undergoes a conformational change which exposes the
catalytic domain In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate (binding site) a ...
found on the α subunit. It is in this catalytic domain where AMPK becomes activated when
phosphorylation In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
takes place at
threonine Threonine (symbol Thr or T) is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form under biological conditions), a carboxyl group (which is in the deprotonated −COO ...
-172 (on α1 isoform) or Thr-174 (on α2 isoform) by an
upstream Upstream may refer to: * Upstream (bioprocess) * ''Upstream'' (film), a 1927 film by John Ford * Upstream (networking) * ''Upstream'' (newspaper), a newspaper covering the oil and gas industry * Upstream (petroleum industry) * Upstream (software ...
AMPK
kinase In biochemistry, a kinase () is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule don ...
( AMPKK). The α, β, and γ subunits can also be found in different isoforms: the γ subunit can exist as either the γ1, γ2 or γ3
isoform A protein isoform, or "protein variant", is a member of a set of highly similar proteins that originate from a single gene or gene family and are the result of genetic differences. While many perform the same or similar biological roles, some isof ...
; the β subunit can exist as either the β1 or β2 isoform; and the α subunit can exist as either the α1 or α2 isoform. Although the most common isoforms expressed in most cells are the α1, β1, and γ1 isoforms, it has been demonstrated that the α2, β2, γ2, and γ3 isoforms are also expressed in
cardiac The heart is a muscular organ in most animals. This organ pumps blood through the blood vessels of the circulatory system. The pumped blood carries oxygen and nutrients to the body, while carrying metabolic waste such as carbon dioxide to t ...
and
skeletal muscle Skeletal muscles (commonly referred to as muscles) are organs of the vertebrate muscular system and typically are attached by tendons to bones of a skeleton. The muscle cells of skeletal muscles are much longer than in the other types of muscl ...
. The following human genes encode AMPK subunits: * α –
PRKAA1 5'-AMP-activated protein kinase catalytic subunit alpha-1 is an enzyme that in humans is encoded by the ''PRKAA1'' gene. The protein encoded by this gene belongs to the serine/threonine protein kinase family. It is the catalytic subunit of the 5' ...
,
PRKAA2 5'-AMP-activated protein kinase catalytic subunit alpha-2 is an enzyme that in humans is encoded by the ''PRKAA2'' gene. Function The protein encoded by this gene is a catalytic subunit of the AMP-activated protein kinase (AMPK). AMPK is a h ...
* β –
PRKAB1 5'-AMP-activated protein kinase subunit beta-1 is an enzyme that in humans is encoded by the ''PRKAB1'' gene. The protein encoded by this gene is a regulatory subunit of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting o ...
,
PRKAB2 5'-AMP-activated protein kinase subunit beta-2 is an enzyme that in humans is encoded by the ''PRKAB2'' gene. The protein encoded by this gene is a regulatory subunit of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting o ...
* γ –
PRKAG1 5'-AMP-activated protein kinase subunit gamma-1 is an enzyme that in humans is encoded by the ''PRKAG1'' gene. Function The protein encoded by this gene is a regulatory subunit of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer ...
,
PRKAG2 5'-AMP-activated protein kinase subunit gamma-2 is an enzyme that in humans is encoded by the ''PRKAG2'' gene. Function AMP-activated protein kinase (AMPK) is a heterotrimeric protein composed of a catalytic alpha subunit, a noncatalytic beta s ...
,
PRKAG3 5'-AMP-activated protein kinase subunit gamma-3 is an enzyme that in humans is encoded by the ''PRKAG3'' gene. Function The protein encoded by this gene is a regulatory subunit of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer ...
The crystal structure of mammalian AMPK regulatory core domain (α C terminal, β C terminal, γ) has been solved in complex with AMP, ADP or ATP.


Regulation

Due to the presence of isoforms of its components, there are 12 versions of AMPK in mammals, each of which can have different tissue localizations, and different functions under different conditions. AMPK is regulated allosterically and by post-translational modification, which work together. If residue Thr-172 of AMPK's α1-subunit (or Thr-174 of AMPK's α2-subunit) is phosphorylated, AMPK is activated around 100-fold; access to that residue by phosphatases is blocked if AMP or ADP can block access for and ATP can displace AMP and ADP. That residue is phosphorylated by at least three kinases ( liver kinase B1 (LKB1), which works in a complex with STRAD and
MO25 Calcium-binding protein 39 is a protein that in humans is encoded by the ''CAB39'' gene. The protein encoded by this gene associates with STK11 (Serine/Threonine Kinase 11) and LYK5, STRAD (STE20-Related ADaptor protein). CAB39 enhances formation ...
, Calcium/calmodulin-dependent protein kinase kinase II-(
CAMKK2 Calcium/calmodulin-dependent protein kinase kinase 2 is an enzyme that in humans is encoded by the ''CAMKK2'' gene. Function The product of this gene belongs to the serine/threonine-specific protein kinase family, and to the Ca++/ calmodulin-dep ...
), and TGFβ-activated kinase 1 (TAK1)) and is dephosphorylated by three phosphatases (
protein phosphatase 2A Protein phosphatase 2A may refer to: * Protein phosphatase 2 Protein phosphatase 2 (PP2), also known as PP2A, is an enzyme that in humans is encoded by the ''PPP2CA'' gene. The PP2A heterotrimeric protein phosphatase is ubiquitously expressed, ...
(PP2A);
protein phosphatase 2C Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metabo ...
(PP2C) and Mg2+-/Mn2+-dependent protein phosphatase 1E ( PPM1E)). Regulation of AMPK by CaMKK2 requires a direct interaction of these two proteins via their kinase domains. The interaction of CaMKK2 with AMPK only involves the α and β subunits of AMPK (AMPK γ is absent from the CaMKK2 complex), thus rendering regulation of AMPK in this context to changes in calcium levels but not AMP or ADP. AMPK is regulated allosterically mostly by competitive binding to the CBS sites on its γ subunit between ATP (which allows phosphatase access to Thr-172) and AMP or ADP (each of which blocks access to phosphatases). It thus appears that AMPK is a sensor of AMP/ATP or ADP/ATP ratios and thus cell energy level. AMPK undergoes a large conformational change upon ATP binding. A region on the α subunit known as the kinase domain (KD) dissociates from its active-state conformation and loosely associates with the γ subunit ~100Å away. The KD also rotates ~180° in the conformational change. Upon KD dissociation, the active loop (AL) of the α subunit which contains the critical phosphorylated Thr residue is fully exposed to upstream phosphatases. This conformational change represents a plausible mechanism for AMPK modulation. When cellular energy states are low (high AMP/ATP or ADP/ATP levels), AMPK adopts the KD-associated conformation and AMPK is protected from dephosphorylation and remains activated. When cellular energy states are high, AMPK adopts the KD-displaced conformation, the AL is exposed to upstream phosphatases, and AMPK is deactivated. The pharmacological compounds Merck Compound 991 and Abbott A769662 bind to the allosteric drug and metabolism site (ADaM) on the β subunit and have been shown to activate AMPK up to 10-fold. ADaM site binding may have roles in AMPK activation as well as protection against dephosphorylation. There are other mechanisms by which AMPK is inhibited by insulin, leptin, and
diacylglycerol A diglyceride, or diacylglycerol (DAG), is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Two possible forms exist, 1,2-diacylglycerols and 1,3-diacylglycerols. DAGs can act as sur ...
by inducing various other phosphorylations. AMPK may be inhibited or activated by various tissue-specific
ubiquitin Ubiquitin is a small (8.6 kDa) regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ''ubiquitously''. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 1980s. Fo ...
ations. It is also regulated by several protein-protein interactions, and may either be activated or inhibited by oxidative factors; the role of oxidation in regulating AMPK was controversial as of 2016.


Function

When AMPK phosphorylates
acetyl-CoA carboxylase Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme () that catalyzes the irreversible carboxylation of acetyl-CoA to produce malonyl-CoA through its two catalytic activities, biotin carboxylase (BC) and carboxyltransferase (CT). ACC is ...
1 (ACC1) or
sterol regulatory element-binding protein Sterol regulatory element-binding proteins (SREBPs) are transcription factors that bind to the sterol regulatory element DNA sequence TCACNCCAC. Mammalian SREBPs are encoded by the genes ''SREBF1'' and ''SREBF2''. SREBPs belong to the basic-h ...
1c (SREBP1c), it inhibits synthesis of fatty acids, cholesterol, and triglycerides, and activates fatty acid uptake and β-oxidation. AMPK stimulates glucose uptake in skeletal muscle by phosphorylating Rab-GTPase-activating protein
TBC1D1 TBC1 domain family member 1 is a protein that in humans is encoded by the ''TBC1D1'' gene. TBC1D1 is the founding member of a family of proteins sharing a 180- to 200-amino acid TBC domain presumed to have a role in regulating cell growth and cel ...
, which ultimately induces fusion of GLUT1 vesicles with the plasma membrane. AMPK stimulates glycolysis by activating phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2/3 and activating phosphorylation of glycogen phosphorylase, and it inhibits glycogen synthesis through inhibitory phosphorylation of glycogen synthase. In the liver, AMPK inhibits gluconeogenesis by inhibiting transcription factors including hepatocyte nuclear factor 4 (HNF4) and CREB regulated transcription coactivator 2 (CRTC2). AMPK inhibits the energy-intensive
protein biosynthesis Protein biosynthesis (or protein synthesis) is a core biological process, occurring inside cells, balancing the loss of cellular proteins (via degradation or export) through the production of new proteins. Proteins perform a number of critical ...
process and can also force a switch from cap-dependent translation to cap-independent translation, which requires less energy, by phosphorylation of
TSC2 Tuberous Sclerosis Complex 2 (TSC2), also known as Tuberin, is a protein that in humans is encoded by the ''TSC2'' gene. Function Mutations in this gene lead to tuberous sclerosis. Its gene product is believed to be a tumor suppressor and is a ...
,
RPTOR Regulatory-associated protein of mTOR also known as raptor or KIAA1303 is an adapter protein that is encoded in humans by the ''RPTOR'' gene. Two mRNAs from the gene have been identified that encode proteins of 1335 (isoform 1) and 1177 (isofor ...
, transcription initiation factor 1A.66, and
eEF2K Eukaryotic elongation factor-2 kinase (eEF-2 kinase or eEF-2K), also known as calmodulin-dependent protein kinase III (CAMKIII) and calcium/calmodulin-dependent eukaryotic elongation factor 2 kinase, is an enzyme that in humans is encoded by the ' ...
. When TSC2 is activated it inhibits mTORC1. As a result of inhibition of mTORC1 by AMPK,
protein synthesis Protein biosynthesis (or protein synthesis) is a core biological process, occurring inside Cell (biology), cells, homeostasis, balancing the loss of cellular proteins (via Proteolysis, degradation or Protein targeting, export) through the product ...
comes to a halt. Activation of AMPK signifies low energy within the cell, so all of the energy consuming pathways like protein synthesis are inhibited, and pathways that generate energy are activated to restore appropriate energy levels in the cell. AMPK activates
autophagy Autophagy (or autophagocytosis; from the Ancient Greek , , meaning "self-devouring" and , , meaning "hollow") is the natural, conserved degradation of the cell that removes unnecessary or dysfunctional components through a lysosome-dependent re ...
by directly and indirectly activating
ULK1 ULK1 is an enzyme that in humans is encoded by the ''ULK1'' gene. Unc-51 like autophagy activating kinase (ULK1/2) are two similar isoforms of an enzyme that in humans are encoded by the ''ULK1/2'' genes. .html" ;"title="/sup>">/sup> .html" ;"t ...
. AMPK also appears to stimulate mitochondrial biogenesis by regulating
PGC-1α Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a protein that in humans is encoded by the ''PPARGC1A'' gene. PPARGC1A is also known as human accelerated region 20 ( HAR20). It may, therefore, have played a key ro ...
which in turn promotes gene transcription in mitochondria. AMPK also activates anti-oxidant defenses.


Clinical significance


Exercise/training

Many
biochemical Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology an ...
adaptations of skeletal muscle that take place during a single bout of
exercise Exercise is a body activity that enhances or maintains physical fitness and overall health and wellness. It is performed for various reasons, to aid growth and improve strength, develop muscles and the cardiovascular system, hone athletic ...
or an extended duration of
training Training is teaching, or developing in oneself or others, any skills and knowledge or Physical fitness, fitness that relate to specific practicality, useful Competence (human resources), competencies. Training has specific goals of improving on ...
, such as increased
mitochondrial biogenesis Mitochondrial biogenesis is the process by which cells increase mitochondrial numbers. It was first described by John Holloszy in the 1960s, when it was discovered that physical endurance training induced higher mitochondrial content levels, leadin ...
and capacity, increased muscle
glycogen Glycogen is a multibranched polysaccharide of glucose that serves as a form of energy storage in animals, fungi, and bacteria. The polysaccharide structure represents the main storage form of glucose in the body. Glycogen functions as one o ...
, and an increase in
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. A ...
s which specialize in glucose uptake in cells such as
GLUT4 Glucose transporter type 4 (GLUT4), also known as solute carrier family 2, facilitated glucose transporter member 4, is a protein encoded, in humans, by the ''SLC2A4'' gene. GLUT4 is the insulin-regulated glucose transporter found primarily in a ...
and
hexokinase A hexokinase is an enzyme that phosphorylates hexoses (six-carbon sugars), forming hexose phosphate. In most organisms, glucose is the most important substrate for hexokinases, and glucose-6-phosphate is the most important product. Hexokina ...
II are thought to be mediated in part by AMPK when it is activated. Additionally, recent discoveries can conceivably suggest a direct AMPK role in increasing
blood supply The blood circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the entire body of a human or other vertebrate. It includes the cardiovascular system, or vascular system, tha ...
to exercised/trained muscle cells by stimulating and stabilizing both
vasculogenesis Vasculogenesis is the process of blood vessel formation, occurring by a '' de novo'' production of endothelial cells. It is sometimes paired with angiogenesis, as the first stage of the formation of the vascular network, closely followed by angio ...
and
angiogenesis Angiogenesis is the physiological process through which new blood vessels form from pre-existing vessels, formed in the earlier stage of vasculogenesis. Angiogenesis continues the growth of the vasculature by processes of sprouting and splitting ...
. Taken together, these
adaptation In biology, adaptation has three related meanings. Firstly, it is the dynamic evolutionary process of natural selection that fits organisms to their environment, enhancing their evolutionary fitness. Secondly, it is a state reached by the po ...
s most likely transpire as a result of both temporary and maintained increases in AMPK activity brought about by increases in the AMP:ATP ratio during single bouts of exercise and long-term training. During a single
acute Acute may refer to: Science and technology * Acute angle ** Acute triangle ** Acute, a leaf shape in the glossary of leaf morphology * Acute (medicine), a disease that it is of short duration and of recent onset. ** Acute toxicity, the adverse eff ...
exercise bout, AMPK allows the contracting muscle cells to adapt to the energy challenges by increasing expression of hexokinase II, translocation of GLUT4 to the
plasma membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
, for glucose uptake, and by stimulating glycolysis. If bouts of exercise continue through a long-term
training Training is teaching, or developing in oneself or others, any skills and knowledge or Physical fitness, fitness that relate to specific practicality, useful Competence (human resources), competencies. Training has specific goals of improving on ...
regimen, AMPK and other signals will facilitate contracting muscle adaptations by escorting muscle cell activity to a metabolic transition resulting in a fatty-acid oxidation approach to ATP generation as opposed to a
glycolytic Glycolysis is the metabolic pathway that converts glucose () into pyruvate (). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH ...
approach. AMPK accomplishes this transition to the oxidative mode of metabolism by upregulating and activating oxidative enzymes such as hexokinase II, PPAR-α, PPAR-δ, PGC-1, UCP-3,
cytochrome C The cytochrome complex, or cyt ''c'', is a small hemeprotein found loosely associated with the inner membrane of the mitochondrion. It belongs to the cytochrome c family of proteins and plays a major role in cell apoptosis. Cytochrome c is hig ...
and
TFAM Mitochondrial transcription factor A, abbreviated as ''TFAM'' or ''mtTFA'', is a protein that in humans is encoded by the ''TFAM'' gene. Function This gene encodes a mitochondrial transcription factor that is a key activator of mitochondrial ...
. Mutations in the skeletal muscle calcium release channel (
RYR1 Ryanodine receptor 1 (RYR-1) also known as skeletal muscle calcium release channel or skeletal muscle-type ryanodine receptor is one of a class of ryanodine receptors and a protein found primarily in skeletal muscle. In humans, it is encoded by t ...
) underlies a life- threatening response to heat in patients with malignant hyperthermia susceptibility (MHS). Upon acute exposure to heat, these mutations cause uncontrolled Ca2+ release from the
sarcoplasmic reticulum The sarcoplasmic reticulum (SR) is a membrane-bound structure found within muscle cells that is similar to the smooth endoplasmic reticulum in other Cell (biology), cells. The main function of the SR is to store calcium ions (Ca2+). Calcium in bio ...
, leading to sustained muscle contractures, severe hyperthermia, and sudden death. At basal conditions, the temperature-dependent Ca2+ leak also leads to increased energy demand and activation of energy sensing AMP kinase (AMPK) in skeletal muscle. The activated AMPK increases muscle metabolic activity, including glycolysis, which leads to marked elevation of circulating lactate. AMPK activity increases with exercise and the LKB1/MO25/STRAD
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
is considered to be the major
upstream Upstream may refer to: * Upstream (bioprocess) * ''Upstream'' (film), a 1927 film by John Ford * Upstream (networking) * ''Upstream'' (newspaper), a newspaper covering the oil and gas industry * Upstream (petroleum industry) * Upstream (software ...
AMPKK of the 5’-AMP-activated protein kinase phosphorylating the α subunit of AMPK at Thr-172. This fact is puzzling considering that although AMPK
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
abundance has been shown to increase in skeletal tissue with
endurance Endurance (also related to sufferance, resilience, constitution, fortitude, and hardiness) is the ability of an organism to exert itself and remain active for a long period of time, as well as its ability to resist, withstand, recover from a ...
training, its level of activity has been shown to decrease with endurance training in both trained and untrained tissue. Currently, the activity of AMPK immediately following a 2 hour bout of exercise of an endurance trained rat is unclear. It is possible that a direct link exists between the observed decrease in AMPK activity in endurance trained skeletal muscle and the apparent decrease in the AMPK response to exercise with endurance training. Although AMPKα2 activation has been thought to be important for mitochondrial adaptations to exercise training, a recent study investigating the response to exercise training in AMPKα2 knockout mice opposes this idea. Their study compared the response to exercise training of several proteins and enzymes in wild type and AMPKα2 knockout mice. And even though the knockout mice had lower basal markers of mitochondrial density (COX-1, CS, and HAD), these markers increased similarly to the wild type mice after exercise training. These findings are supported by another study also showing no difference in mitochondrial adaptations to exercise training between wild type and knockout mice.


Maximum life span

The ''C. elegans'' homologue of AMPK, aak-2, has been shown by Michael Ristow and colleagues to be required for extension of life span in states of glucose restriction mediating a process named
mitohormesis Hormesis is a characteristic of many biological processes, namely a biphasic or triphasic response to exposure to increasing amounts of a substance or condition. Within the hormetic zone, the biological response to low exposures to toxins and othe ...
.


Lipid metabolism

One of the effects of
exercise Exercise is a body activity that enhances or maintains physical fitness and overall health and wellness. It is performed for various reasons, to aid growth and improve strength, develop muscles and the cardiovascular system, hone athletic ...
is an increase in
fatty acid metabolism Fatty acid metabolism consists of various metabolic processes involving or closely related to fatty acids, a family of molecules classified within the lipid macronutrient category. These processes can mainly be divided into (1) catabolic processes ...
, which provides more
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
for the cell. One of the key pathways in AMPK's regulation of
fatty acid oxidation Fatty is a derogatory term for someone who is Obesity, obese. It may refer also to: People * Mai Fatty, Gambian politician * Roscoe Arbuckle (1887–1933), American actor and comedian * Fatty Briody (1858–1903), American Major League Baseball ...
is the phosphorylation and inactivation of
acetyl-CoA carboxylase Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme () that catalyzes the irreversible carboxylation of acetyl-CoA to produce malonyl-CoA through its two catalytic activities, biotin carboxylase (BC) and carboxyltransferase (CT). ACC is ...
. Acetyl-CoA carboxylase (ACC) converts acetyl-CoA to
malonyl-CoA Malonyl-CoA is a coenzyme A derivative of malonic acid. Functions It plays a key role in chain elongation in fatty acid biosynthesis and polyketide biosynthesis. Fatty acid biosynthesis Malonyl-CoA provides 2-carbon units to fatty acids and commi ...
, an
inhibitor Inhibitor or inhibition may refer to: In biology * Enzyme inhibitor, a substance that binds to an enzyme and decreases the enzyme's activity * Reuptake inhibitor, a substance that increases neurotransmission by blocking the reuptake of a neurotra ...
of carnitine palmitoyltransferase 1 ( CPT-1). CPT-1 transports
fatty acids In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, f ...
into the
mitochondria A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
for
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a d ...
. Inactivation of ACC, therefore, results in increased fatty acid transport and subsequent oxidation. It is also thought that the decrease in malonyl-CoA occurs as a result of
malonyl-CoA decarboxylase Malonyl-CoA decarboxylase (), (which can also be called MCD and malonyl-CoA carboxyl-lyase) is found in bacteria and humans and has important roles in regulating fatty acid metabolism and food intake, and it is an attractive target for drug discove ...
(MCD), which may be regulated by AMPK. MCD is an
antagonist An antagonist is a character in a story who is presented as the chief foe of the protagonist. Etymology The English word antagonist comes from the Greek ἀνταγωνιστής – ''antagonistēs'', "opponent, competitor, villain, enemy, riv ...
to ACC, decarboxylating malonyl-CoA to acetyl-CoA, resulting in decreased malonyl-CoA and increased CPT-1 and fatty acid oxidation. AMPK also plays an important role in
lipid metabolism Lipid metabolism is the synthesis and degradation of lipids in cells, involving the breakdown or storage of fats for energy and the synthesis of structural and functional lipids, such as those involved in the construction of cell membranes. In anim ...
in the
liver The liver is a major Organ (anatomy), organ only found in vertebrates which performs many essential biological functions such as detoxification of the organism, and the Protein biosynthesis, synthesis of proteins and biochemicals necessary for ...
. It has long been known that
hepatic The liver is a major organ only found in vertebrates which performs many essential biological functions such as detoxification of the organism, and the synthesis of proteins and biochemicals necessary for digestion and growth. In humans, it i ...
ACC has been regulated in the liver by
phosphorylation In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
. AMPK also phosphorylates and inactivates 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), a key enzyme in
cholesterol synthesis The mevalonate pathway, also known as the isoprenoid pathway or HMG-CoA reductase pathway is an essential metabolic pathway present in eukaryotes, archaea, and some bacteria. The pathway produces two five-carbon building blocks called isopenten ...
. HMGR converts 3-hydroxy-3-methylglutaryl-CoA, which is made from acetyl-CoA, into
mevalonic acid Mevalonic acid (MVA) is a key organic compound in biochemistry; the name is a contraction of dihydroxymethylvalerolactone. The carboxylate anion of mevalonic acid, which is the predominant form in biological environments, is known as ''mevalonate ...
, which then travels down several more metabolic steps to become
cholesterol Cholesterol is any of a class of certain organic molecules called lipids. It is a sterol (or modified steroid), a type of lipid. Cholesterol is biosynthesized by all animal cells and is an essential structural component of animal cell mem ...
. AMPK, therefore, helps regulate fatty acid oxidation and cholesterol synthesis.


Glucose transport

Insulin Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the ''INS'' gene. It is considered to be the main anabolic hormone of the body. It regulates the metabolism o ...
is a
hormone A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are required ...
which helps regulate
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, using ...
levels in the body. When blood glucose is high, insulin is released from the
Islets of Langerhans The pancreatic islets or islets of Langerhans are the regions of the pancreas that contain its endocrine (hormone-producing) cells, discovered in 1869 by German pathological anatomist Paul Langerhans. The pancreatic islets constitute 1–2% of ...
. Insulin, among other things, will then facilitate the uptake of glucose into cells via increased expression and translocation of glucose transporter GLUT-4. Under conditions of exercise, however,
blood sugar Glycaemia, also known as blood sugar level, blood sugar concentration, or blood glucose level is the measure of glucose concentrated in the blood of humans or other animals. Approximately 4 grams of glucose, a simple sugar, is present in the blo ...
levels are not necessarily high, and insulin is not necessarily activated, yet muscles are still able to bring in glucose. AMPK seems to be responsible in part for this
exercise Exercise is a body activity that enhances or maintains physical fitness and overall health and wellness. It is performed for various reasons, to aid growth and improve strength, develop muscles and the cardiovascular system, hone athletic ...
-induced glucose uptake. Goodyear et al. observed that with exercise, the concentration of GLUT-4 was increased in the
plasma membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
, but decreased in the
microsomal In cell biology, microsomes are heterogeneous vesicle-like artifacts (~20-200 nm diameter) re-formed from pieces of the endoplasmic reticulum (ER) when eukaryotic cells are broken-up in the laboratory; microsomes are not present in healthy, liv ...
membranes, suggesting that exercise facilitates the translocation of vesicular GLUT-4 to the
plasma membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
. While acute exercise increases GLUT-4 translocation, endurance training will increase the total amount of GLUT-4 protein available. It has been shown that both electrical contraction and
AICA ribonucleotide 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) is an intermediate in the generation of inosine monophosphate. AICAR is an analog of adenosine monophosphate (AMP) that is capable of stimulating AMP-dependent protein kinase (AMPK) activity. ...
(AICAR) treatment increase AMPK activation, glucose uptake, and GLUT-4 translocation in perfused rat
hindlimb A hindlimb or back limb is one of the paired articulated appendages (limbs) attached on the caudal ( posterior) end of a terrestrial tetrapod vertebrate's torso.http://www.merriam-webster.com/medical/hind%20limb, Merriam Webster Dictionary-Hindl ...
muscle, linking exercise-induced glucose uptake to AMPK. Chronic AICAR injections, simulating some of the effects of
endurance training Endurance training is the act of exercising to increase endurance. The term endurance training generally refers to training the aerobic system as opposed to the anaerobic system. The need for endurance in sports is often predicated as the need o ...
, also increase the total amount of GLUT-4
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
in the
muscle cell A muscle cell is also known as a myocyte when referring to either a cardiac muscle cell (cardiomyocyte), or a smooth muscle cell as these are both small cells. A skeletal muscle cell is long and threadlike with many nuclei and is called a muscl ...
. Two proteins are essential for the regulation of GLUT-4 expression at a transcriptional level – myocyte enhancer factor 2 (
MEF2 In the field of molecular biology, myocyte enhancer factor-2 (Mef2) proteins are a family of transcription factors which through control of gene expression are important regulators of cellular differentiation and consequently play a critical rol ...
) and GLUT4 enhancer factor (GEF). Mutations in the DNA binding regions for either of these proteins results in
ablation Ablation ( la, ablatio – removal) is removal or destruction of something from an object by vaporization, chipping, erosion, erosive processes or by other means. Examples of ablative materials are described below, and include spacecraft materi ...
of
transgene A transgene is a gene that has been transferred naturally, or by any of a number of genetic engineering techniques, from one organism to another. The introduction of a transgene, in a process known as transgenesis, has the potential to change the ...
GLUT-4 expression. These results prompted a study in 2005 which showed that AMPK directly phosphorylates GEF, but it doesn't seem to directly activate MEF2. AICAR treatment has been shown, however, to increase transport of both proteins into the
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucle ...
, as well as increase the binding of both to the GLUT-4
promoter region In genetics, a promoter is a sequence of DNA to which proteins bind to initiate transcription of a single RNA transcript from the DNA downstream of the promoter. The RNA transcript may encode a protein (mRNA), or can have a function in and of i ...
. There is another protein involved in
carbohydrate metabolism Carbohydrate metabolism is the whole of the biochemistry, biochemical processes responsible for the metabolic anabolism, formation, catabolism, breakdown, and interconversion of carbohydrates in life, living organisms. Carbohydrates are central t ...
that is worthy of mention along with GLUT-4. The enzyme
hexokinase A hexokinase is an enzyme that phosphorylates hexoses (six-carbon sugars), forming hexose phosphate. In most organisms, glucose is the most important substrate for hexokinases, and glucose-6-phosphate is the most important product. Hexokina ...
phosphorylates a six-carbon sugar, most notably
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, using ...
, which is the first step in
glycolysis Glycolysis is the metabolic pathway that converts glucose () into pyruvate (). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH ...
. When glucose is transported into the cell it is phosphorylated by hexokinase. This phosphorylation keeps glucose from leaving the
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
, and by changing the structure of glucose through phosphorylation, it decreases the concentration of glucose molecules, maintaining a gradient for more glucose to be transported into the cell. Hexokinase II
transcription Transcription refers to the process of converting sounds (voice, music etc.) into letters or musical notes, or producing a copy of something in another medium, including: Genetics * Transcription (biology), the copying of DNA into RNA, the fir ...
is increased in both red and white
skeletal muscle Skeletal muscles (commonly referred to as muscles) are organs of the vertebrate muscular system and typically are attached by tendons to bones of a skeleton. The muscle cells of skeletal muscles are much longer than in the other types of muscl ...
upon treatment with AICAR. With chronic injections of AICAR, total protein content of hexokinase II increases in rat skeletal muscle.


Mitochondria

Mitochondrial enzymes, such as
cytochrome c The cytochrome complex, or cyt ''c'', is a small hemeprotein found loosely associated with the inner membrane of the mitochondrion. It belongs to the cytochrome c family of proteins and plays a major role in cell apoptosis. Cytochrome c is hig ...
,
succinate dehydrogenase Succinate dehydrogenase (SDH) or succinate-coenzyme Q reductase (SQR) or respiratory complex II is an enzyme complex, found in many bacterial cells and in the inner mitochondrial membrane of eukaryotes. It is the only enzyme that participates i ...
,
malate dehydrogenase Malate dehydrogenase () (MDH) is an enzyme that reversibly catalyzes the oxidation of malate to oxaloacetate using the reduction of NAD+ to NADH. This reaction is part of many metabolic pathways, including the citric acid cycle. Other malate ...
, α-ketoglutarate dehydrogenase, and
citrate synthase The enzyme citrate synthase E.C. 2.3.3.1 (previously 4.1.3.7)] exists in nearly all living cells and stands as a pace-making enzyme in the first step of the citric acid cycle (or Krebs cycle). Citrate synthase is localized within eukaryotic cel ...
, increase in expression and activity in response to exercise. AICA ribonucleotide, AICAR stimulation of AMPK increases cytochrome c and δ-aminolevulinate synthase ( ALAS), a
rate-limiting enzyme In chemical kinetics, the overall rate of a reaction is often approximately determined by the slowest step, known as the rate-determining step (RDS or RD-step or r/d step) or rate-limiting step. For a given reaction mechanism, the prediction of the ...
involved in the production of
heme Heme, or haem (pronounced / hi:m/ ), is a precursor to hemoglobin, which is necessary to bind oxygen in the bloodstream. Heme is biosynthesized in both the bone marrow and the liver. In biochemical terms, heme is a coordination complex "consisti ...
.
Malate dehydrogenase Malate dehydrogenase () (MDH) is an enzyme that reversibly catalyzes the oxidation of malate to oxaloacetate using the reduction of NAD+ to NADH. This reaction is part of many metabolic pathways, including the citric acid cycle. Other malate ...
and
succinate dehydrogenase Succinate dehydrogenase (SDH) or succinate-coenzyme Q reductase (SQR) or respiratory complex II is an enzyme complex, found in many bacterial cells and in the inner mitochondrial membrane of eukaryotes. It is the only enzyme that participates i ...
also increase, as well as citrate synthase activity, in rats treated with AICAR injections. Conversely, in LKB1 knockout mice, there are decreases in cytochrome c and citrate synthase activity, even if the mice are "trained" by voluntary exercise. AMPK is required for increased peroxisome proliferator-activated receptor γ coactivator-1α (
PGC-1α Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a protein that in humans is encoded by the ''PPARGC1A'' gene. PPARGC1A is also known as human accelerated region 20 ( HAR20). It may, therefore, have played a key ro ...
) expression in skeletal muscle in response to
creatine Creatine ( or ) is an organic compound with the nominal formula (H2N)(HN)CN(CH3)CH2CO2H. It exists in various modifications (tautomers) in solution. Creatine is found in vertebrates where it facilitates recycling of adenosine triphosphate ( ...
depletion. PGC-1α is a transcriptional regulator for genes involved in
fatty acid oxidation Fatty is a derogatory term for someone who is Obesity, obese. It may refer also to: People * Mai Fatty, Gambian politician * Roscoe Arbuckle (1887–1933), American actor and comedian * Fatty Briody (1858–1903), American Major League Baseball ...
,
gluconeogenesis Gluconeogenesis (GNG) is a metabolic pathway that results in the generation of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrat ...
, and is considered the master regulator for
mitochondrial biogenesis Mitochondrial biogenesis is the process by which cells increase mitochondrial numbers. It was first described by John Holloszy in the 1960s, when it was discovered that physical endurance training induced higher mitochondrial content levels, leadin ...
. To do this, it enhances the activity of
transcription factors In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The func ...
like nuclear respiratory factor 1 ( NRF-1),
myocyte A muscle cell is also known as a myocyte when referring to either a cardiac muscle cell (cardiomyocyte), or a smooth muscle cell as these are both small cells. A skeletal muscle cell is long and threadlike with many nuclei and is called a muscl ...
enhancer factor 2 (MEF2), host cell factor (HCF), and others. It also has a positive feedback loop, enhancing its own expression. Both MEF2 and Cyclic adenosine monophosphate, cAMP response element (CREB#cAMP response element, CRE) are essential for contraction-induced PGC-1α promoter (biology), promoter activity. LKB1 knockout mice show a decrease in PGC-1α, as well as mitochondrial proteins.


Thyroid hormone

AMPK and thyroid
hormone A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are required ...
regulate some similar processes. Knowing these similarities, Winder and Hardie et al. designed an experiment to see if AMPK was influenced by thyroid hormone. They found that all of the subunits of AMPK were increased in
skeletal muscle Skeletal muscles (commonly referred to as muscles) are organs of the vertebrate muscular system and typically are attached by tendons to bones of a skeleton. The muscle cells of skeletal muscles are much longer than in the other types of muscl ...
, especially in the soleus and red quadriceps, with thyroid hormone treatment. There was also an increase in phospho-ACC, a marker of AMPK activity.


Glucose sensing systems

Loss of AMPK has been reported to alter the sensitivity of glucose sensing cells, through poorly defined mechanisms. Loss of the AMPKα2 subunit in pancreatic β-cells and hypothalamic neurons decreases the sensitivity of these cells to changes in extracellular glucose concentration. Moreover, exposure of rats to recurrent bouts of insulin induced hypoglycemia/glucopenia, reduces the activation of AMPK within the hypothalamus, whilst also suppressing the counterregulatory response to hypoglycemia. Pharmacological activation of AMPK by delivery of AMPK activating drug AICAR, directly into the hypothalamus can increase the counterregulatory response to hypoglycaemia.


Lysosomal damage, inflammatory diseases and metformin

AMPK is recruited to lysosomes and regulated at the lysosomes via several systems of clinical significance. This includes the AXIN1, AXIN - LKB1 complex, acting in response to glucose limitations functioning independently of AMP sensing, which detects low glucose as absence of Fructose 1,6-bisphosphate, fructose-1,6-bisphosphate via a dynamic set of interactions between lysosomally localized V-ATPase-Fructose-bisphosphate aldolase, aldolase in contact with the endoplasmic reticulum localized TRPV. A second AMPK-control system localized to lysosomes depends on the Galectin-9-MAP3K7, TAK1 system and ubiquitination responses at controlled by deubiquitinating enzymes such as USP9X leading to AMPK activation in response to lysosomal damage, a condition that can occur biochemically, physically via protein aggregates such as Proteopathy, proteopathic tau in Alzheimer's disease, crystalline silica causing silicosis, cholesterol crystals causing inflammation via NALP3, NLRP3 inflammasome and rupture of atherosclerotic lesions, Urate crystal arthropathy, urate crystals associated with gout, or during microbial invasion such as Mycobacterium tuberculosis or coronaviruses causing Severe acute respiratory syndrome, SARS. Both of the above lysosomally localized systems controlling AMPK activate it in response to metformin, a widely prescribed Anti-diabetic medication, anti-diabetic drug.


Tumor suppression and promotion

Some evidence indicates that AMPK may have a role in tumor suppression. Studies have found that AMPK may exert most, or even all of, the tumor suppressing properties of liver kinase B1 (LKB1). Additionally, studies where the AMPK activator metformin was used to treat diabetes found a correlation with a reduced risk of cancer, compared to other medications. Gene knockout and gene knockdown, knockdown studies with mice found that mice without the gene to express AMPK had greater risks of developing lymphomas, though as the gene was knocked out globally instead of just in B cells, it was impossible to conclude that AMP knockout had cell-autonomous effects within tumor progenitor cells. In contrast, some studies have linked AMPK with a role as a tumor promoter by protecting cancer cells from stress. Thus, once cancerous cells have formed in an organism, AMPK may swap from protecting against cancer to protecting the cancer itself. Studies have found that tumor cells with AMPK knockout are more susceptible to death by glucose starvation or extracellular matrix detachment, which may indicate AMPK has a role in preventing these two outcomes. There is no direct evidence that inhibiting AMPK would be an effective cancer treatment in humans.


Controversy over role in adaption to exercise/training

A seemingly paradoxical role of AMPK occurs when we take a closer look at the energy-sensing
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. A ...
in relation to exercise and long-term training. Similar to short-term acute training scale, long-term endurance training studies also reveal increases in oxidative metabolic enzymes, GLUT-4, mitochondrial size and quantity, and an increased dependency on the oxidation of fatty acids; however, Winder et al. reported in 2002 that despite observing these increased oxidative biochemical adaptations to long-term endurance training (similar to those mentioned above), the AMPK response (activation of AMPK with the onset of exercise) to acute bouts of exercise decreased in red quadriceps (RQ) with training (3 – see Fig.1). Conversely, the study did not observe the same results in white quadriceps (WQ) and soleus (SOL) muscles that they did in RQ. The trained rats used for that endurance experiment, study ran on treadmills 5 days/wk in two 1-h sessions, morning and afternoon. The rats were also running up to 31m/min (grade 15%). Finally, following training, the rats were sacrificed either at rest or following 10 minutes of exercise. Because the AMPK response to exercise decreases with increased training duration, many questions arise that would challenge the AMPK role with respect to
biochemical Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology an ...
adaptation In biology, adaptation has three related meanings. Firstly, it is the dynamic evolutionary process of natural selection that fits organisms to their environment, enhancing their evolutionary fitness. Secondly, it is a state reached by the po ...
s to exercise and endurance training. This is due in part to the marked increases in the
mitochondria A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
l biogenesis, upregulation of GLUT-4, UCP-3, Hexokinase II along with other metabolic and mitochondrial enzymes despite decreases in AMPK activity with training. Questions also arise because
skeletal muscle Skeletal muscles (commonly referred to as muscles) are organs of the vertebrate muscular system and typically are attached by tendons to bones of a skeleton. The muscle cells of skeletal muscles are much longer than in the other types of muscl ...
Cell (biology), cells which express these decreases in AMPK activity in response to endurance training also seem to be maintaining an oxidative dependent approach to metabolism, which is likewise thought to be regulated to some extent by AMPK activity. If the AMPK response to exercise is responsible in part for biochemical adaptations to training, how then can these adaptations to training be maintained if the AMPK response to exercise is being attenuated with training? It is hypothesized that these adaptive roles to training are maintained by AMPK activity and that the increases in AMPK activity in response to exercise in trained skeletal muscle have not yet been observed due to biochemical adaptations that the training itself stimulated in the muscle tissue to reduce the metabolic need for AMPK activation. In other words, due to previous adaptations to training, AMPK will not be activated, and further adaptation will not occur, until the intracellular ATP levels become depleted from an even higher intensity energy challenge than prior to those previous adaptations.


See also

* Salicylic acid * Aspirin * Salsalate


References


External links

* * {{DEFAULTSORT:Amp-Activated Protein Kinase Protein kinases EC 2.7.11